Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(4): 111529, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288691

RESUMO

PARP13/ZAP (zinc-finger antiviral protein) acts against multiple viruses by promoting degradation of viral mRNA. PARP13 has four N-terminal zinc (Zn) fingers that bind CG-rich nucleotide sequences, a C-terminal ADP ribosyltransferase fold, and a central region with a fifth Zn finger and tandem WWE domains. The central PARP13 region, ZnF5-WWE1-WWE2, is implicated in binding poly(ADP-ribose); however, there are limited insights into its structure and function. We present crystal structures of ZnF5-WWE1-WWE2 from mouse PARP13 in complex with ADP-ribose and in complex with ATP. The crystal structures and binding studies demonstrate that WWE2 interacts with ADP-ribose and ATP, whereas WWE1 does not have a functional binding site. Binding studies with poly(ADP-ribose) ligands indicate that WWE2 serves as an anchor for preferential binding to the terminal end of poly(ADP-ribose) chains. The composite ZnF5-WWE1-WWE2 structure forms an extended surface to engage ADP-ribose chains, representing a distinctive mode of recognition that provides a framework for investigating the impact of poly(ADP-ribose) on PARP13 function.


Assuntos
Adenosina Difosfato Ribose , Poli Adenosina Difosfato Ribose , Camundongos , Animais , Adenosina Difosfato Ribose/metabolismo , Dedos de Zinco , ADP Ribose Transferases/metabolismo , RNA Mensageiro/genética , Antivirais , Zinco , Trifosfato de Adenosina
2.
Biochim Biophys Acta Proteins Proteom ; 1867(4): 426-433, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30716506

RESUMO

The thioredoxin system is a ubiquitous oxidoreductase system that consists of the enzyme thioredoxin reductase (TrxR), its cofactor nicotinamide adenine dinucleotide phosphate (NAD(P)H) and the protein thioredoxin (Trx). The system has been comprehensively studied from many organisms, such as Escherichia coli (E. coli); however, structural and functional analysis of this system from thermophilic bacteria has not been as extensive. In this study, Thermosipho africanus, a thermophilic eubacterium, Trx1 (TaTrx1) was successfully cloned, overexpressed and purified, to greater than 95% purity. Inspection of the amino acid sequence of TaTrx1 categorized the protein as a putative Trx. Its ability to reduce the interchain disulfides of insulin, in the presence of dithiothreitol, provided further evidence to suggest that it was a Trx. The three dimensional structure of the protein, determined using X-ray crystallography, provided additional evidence for this. The crystal structure was solved in space group P212121 to 1.8 A resolution and showed the characteristic thioredoxin fold; four ß-strands surrounded by three α-helices. The active site of TaTrx1 contained two cysteines that formed a disulfide bridge, and was structurally similar to the active site of EcTrx1. Further studies indicated that TaTrx1 was far more stable than Trx1 of E. coli (EcTrx1). The protein could withstand both higher temperatures and higher concentrations of guanidine hydrochloride before denaturing. Our studies have therefore identified a novel thermophilic putative Trx that structurally and functionally behaves like a Trx.


Assuntos
Proteínas de Bactérias/química , Eubacterium , Tiorredoxinas/química , Sequência de Aminoácidos , Insulina/química , Conformação Proteica , Estabilidade Proteica
3.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 510-519, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28192204

RESUMO

UDP-arabinopyranose mutase (UAM) is a plant enzyme which interconverts UDP-arabinopyranose (UDP-Arap; a six-membered sugar) to UDP-arabinofuranose (UDP-Araf; a five-membered sugar). Plant mutases belong to a small gene family called Reversibly Glycosylated Proteins (RGPs). So far, UAM has been identified in Oryza sativa (Rice), Arabidopsis thaliana and Hordeum vulgare (Barley). The enzyme requires divalent metal ions for catalytic activity. Here, the divalent metal ion dependency of UAMs from O. sativa (rice) and A. thaliana have been studied using HPLC-based kinetic assays. It was determined that UAM from these species had the highest relative activity in a range of 40-80µM Mn2+. Excess Mn2+ ion concentration decreased the enzyme activity. This trend was observed when other divalent metal ions were used to test activity. To gain a perspective of the role played by the metal ion in activity, an ab initio structural model was generated based on the UAM amino acid sequence and a potential metal binding region was identified. Based on our results, we propose that the probable role of the metal in UAM is stabilizing the diphosphate of the substrate, UDP-Arap.


Assuntos
Arabidopsis/enzimologia , Transferases Intramoleculares/química , Oryza/enzimologia , Açúcares de Uridina Difosfato/química , Sítios de Ligação , Catálise , Parede Celular/enzimologia , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Íons/química , Cinética , Metais/química , Ligação Proteica , Açúcares de Uridina Difosfato/metabolismo
4.
Chembiochem ; 17(23): 2264-2273, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27653508

RESUMO

UDP-galactopyranose mutase (UGM), a key enzyme in the biosynthesis of mycobacterial cell walls, is a potential target for the treatment of tuberculosis. In this work, we investigate binding models of a non-substrate-like inhibitor, MS-208, with M. tuberculosis UGM. Initial saturation transfer difference (STD) NMR experiments indicated a lack of direct competition between MS-208 and the enzyme substrate, and subsequent kinetic assays showed mixed inhibition. We thus hypothesized that MS-208 binds at an allosteric binding site (A-site) instead of the enzyme active site (S-site). A candidate A-site was identified in a subsequent computational study, and the overall hypothesis was supported by ensuing mutagenesis studies of the A-site. Further molecular dynamics studies led us to propose that MS-208 inhibition occurs by preventing complete closure of an active site mobile loop that is necessary for productive substrate binding. The results suggest the presence of an A-site with potential druggability, opening up new opportunities for the development of novel drug candidates against tuberculosis.


Assuntos
Inibidores Enzimáticos/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Pirazóis/farmacologia , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Transferases Intramoleculares/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Relação Estrutura-Atividade
5.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 6): 443-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27303896

RESUMO

Thioredoxin is a small ubiquitous protein that plays a role in many biological processes. A putative thioredoxin, Trx1, from Thermosipho africanus strain TCF52B, which has low sequence identity to its closest homologues, was successfully cloned, overexpressed and purified. The protein was crystallized using the microbatch-under-oil technique at 289 K in a variety of conditions; crystals grown in 0.2 M MgCl2, 0.1 M bis-tris pH 6.5, 25%(w/v) PEG 3350, which grew as irregular trapezoids to maximum dimensions of 1.2 × 1.5 × 0.80 mm, were used for sulfur single-wavelength anomalous dispersion analysis. The anomalous sulfur signal could be detected to 2.83 Šresolution using synchrotron radiation on the 08B1-1 beamline at the Canadian Light Source. The crystals belonged to space group P212121, with unit-cell parameters a = 40.6, b = 41.5, c = 56.4 Å, α = ß = γ = 90.0°.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Conformação Proteica , Tiorredoxinas/química , Tiorredoxinas/genética
6.
J Am Chem Soc ; 137(3): 1230-44, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25562380

RESUMO

UDP-Galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the reversible conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf) and plays a key role in the biosynthesis of the mycobacterial cell wall galactofuran. A soluble, active form of UGM from Mycobacterium tuberculosis (MtUGM) was obtained from a dual His6-MBP-tagged MtUGM construct. We present the first complex structures of MtUGM with bound substrate UDP-Galp (both oxidized flavin and reduced flavin). In addition, we have determined the complex structures of MtUGM with inhibitors (UDP and the dideoxy-tetrafluorinated analogues of both UDP-Galp (UDP-F4-Galp) and UDP-Galf (UDP-F4-Galf)), which represent the first complex structures of UGM with an analogue in the furanose form, as well as the first structures of dideoxy-tetrafluorinated sugar analogues bound to a protein. These structures provide detailed insight into ligand recognition by MtUGM and show an overall binding mode similar to those reported for other prokaryotic UGMs. The binding of the ligand induces conformational changes in the enzyme, allowing ligand binding and active-site closure. In addition, the complex structure of MtUGM with UDP-F4-Galf reveals the first detailed insight into how the furanose moiety binds to UGM. In particular, this study confirmed that the furanoside adopts a high-energy conformation ((4)E) within the catalytic pocket. Moreover, these investigations provide structural insights into the enhanced binding of the dideoxy-tetrafluorinated sugars compared to unmodified analogues. These results will help in the design of carbohydrate mimetics and drug development, and show the enormous possibilities for the use of polyfluorination in the design of carbohydrate mimetics.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Uridina Difosfato Glucose/farmacologia , Sítios de Ligação/efeitos dos fármacos , Inibidores Enzimáticos/química , Hidrocarbonetos Fluorados/química , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Ligantes , Estrutura Molecular , Especificidade por Substrato/efeitos dos fármacos , Uridina Difosfato Glucose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...